Typesense
Vector store that utilizes the Typesense search engine.
Basic Usage
- npm
- Yarn
- pnpm
npm install @langchain/openai @langchain/community @langchain/core
yarn add @langchain/openai @langchain/community @langchain/core
pnpm add @langchain/openai @langchain/community @langchain/core
import {
Typesense,
TypesenseConfig,
} from "@lanchain/community/vectorstores/typesense";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Client } from "typesense";
import { Document } from "@langchain/core/documents";
const vectorTypesenseClient = new Client({
nodes: [
{
// Ideally should come from your .env file
host: "...",
port: 123,
protocol: "https",
},
],
// Ideally should come from your .env file
apiKey: "...",
numRetries: 3,
connectionTimeoutSeconds: 60,
});
const typesenseVectorStoreConfig = {
// Typesense client
typesenseClient: vectorTypesenseClient,
// Name of the collection to store the vectors in
schemaName: "your_schema_name",
// Optional column names to be used in Typesense
columnNames: {
// "vec" is the default name for the vector column in Typesense but you can change it to whatever you want
vector: "vec",
// "text" is the default name for the text column in Typesense but you can change it to whatever you want
pageContent: "text",
// Names of the columns that you will save in your typesense schema and need to be retrieved as metadata when searching
metadataColumnNames: ["foo", "bar", "baz"],
},
// Optional search parameters to be passed to Typesense when searching
searchParams: {
q: "*",
filter_by: "foo:[fooo]",
query_by: "",
},
// You can override the default Typesense import function if you want to do something more complex
// Default import function:
// async importToTypesense<
// T extends Record<string, unknown> = Record<string, unknown>
// >(data: T[], collectionName: string) {
// const chunkSize = 2000;
// for (let i = 0; i < data.length; i += chunkSize) {
// const chunk = data.slice(i, i + chunkSize);
// await this.caller.call(async () => {
// await this.client
// .collections<T>(collectionName)
// .documents()
// .import(chunk, { action: "emplace", dirty_values: "drop" });
// });
// }
// }
import: async (data, collectionName) => {
await vectorTypesenseClient
.collections(collectionName)
.documents()
.import(data, { action: "emplace", dirty_values: "drop" });
},
} satisfies TypesenseConfig;
/**
* Creates a Typesense vector store from a list of documents.
* Will update documents if there is a document with the same id, at least with the default import function.
* @param documents list of documents to create the vector store from
* @returns Typesense vector store
*/
const createVectorStoreWithTypesense = async (documents: Document[] = []) =>
Typesense.fromDocuments(
documents,
new OpenAIEmbeddings(),
typesenseVectorStoreConfig
);
/**
* Returns a Typesense vector store from an existing index.
* @returns Typesense vector store
*/
const getVectorStoreWithTypesense = async () =>
new Typesense(new OpenAIEmbeddings(), typesenseVectorStoreConfig);
// Do a similarity search
const vectorStore = await getVectorStoreWithTypesense();
const documents = await vectorStore.similaritySearch("hello world");
// Add filters based on metadata with the search parameters of Typesense
// will exclude documents with author:JK Rowling, so if Joe Rowling & JK Rowling exists, only Joe Rowling will be returned
vectorStore.similaritySearch("Rowling", undefined, {
filter_by: "author:!=JK Rowling",
});
// Delete a document
vectorStore.deleteDocuments(["document_id_1", "document_id_2"]);
Constructor
Before starting, create a schema in Typesense with an id, a field for the vector and a field for the text. Add as many other fields as needed for the metadata.
constructor(embeddings: Embeddings, config: TypesenseConfig)
: Constructs a new instance of theTypesense
class.embeddings
: An instance of theEmbeddings
class used for embedding documents.config
: Configuration object for the Typesense vector store.typesenseClient
: Typesense client instance.schemaName
: Name of the Typesense schema in which documents will be stored and searched.searchParams
(optional): Typesense search parameters. Default is{ q: '*', per_page: 5, query_by: '' }
.columnNames
(optional): Column names configuration.vector
(optional): Vector column name. Default is'vec'
.pageContent
(optional): Page content column name. Default is'text'
.metadataColumnNames
(optional): Metadata column names. Default is an empty array[]
.
import
(optional): Replace the default import function for importing data to Typesense. This can affect the functionality of updating documents.
Methods
async addDocuments(documents: Document[]): Promise<void>
: Adds documents to the vector store. The documents will be updated if there is a document with the same ID.static async fromDocuments(docs: Document[], embeddings: Embeddings, config: TypesenseConfig): Promise<Typesense>
: Creates a Typesense vector store from a list of documents. Documents are added to the vector store during construction.static async fromTexts(texts: string[], metadatas: object[], embeddings: Embeddings, config: TypesenseConfig): Promise<Typesense>
: Creates a Typesense vector store from a list of texts and associated metadata. Texts are converted to documents and added to the vector store during construction.async similaritySearch(query: string, k?: number, filter?: Record<string, unknown>): Promise<Document[]>
: Searches for similar documents based on a query. Returns an array of similar documents.async deleteDocuments(documentIds: string[]): Promise<void>
: Deletes documents from the vector store based on their IDs.
Related
- Vector store conceptual guide
- Vector store how-to guides